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Abstract. Following almost a century of debate on possible “independent of measurement” elements of
reality, or “induced” elements of reality – originally invoked as an ad-hoc collapse postulate, we propose
a novel line of interference experiments which may be able to examine the regime of induced elements of
reality. At the basis of the proposed experiment, lies the hypothesis that models of “induced” elements of
reality should exhibit symmetry breaking within quantum evolution. The described symmetry experiment
is thus aimed at being able to detect and resolve spatial symmetry breaking signatures. The proposed
experiment stands at the edge of present day technological abilities and will be, so we believe, realizable
in the near future.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons,
and ions – 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements

1 Introduction

The loss of the ability to consistently use the word particle
(referring to a classical point of mass), is of course one of
the well-known implications of quantum mechanics, and
stands at the base of what has been named the “measure-
ment problem”. Instead, we make use of a mathematical
entity called the wave function, which is allowed super-
positions, which cannot describe our classical notion of
reality. This is perhaps most readily exhibited in the dou-
ble slit experiment. Indeed it was Feynman who described
the double slit experiment as “... it contains the only mys-
tery” [1]. It is also a matter of general knowledge that
many of the important contributors to the theory were
not satisfied with this state of affairs. They felt that some
level of independent reality does in fact exist, and connects
to quantum expectations through some set of local or non-
local hidden variables. Just to mention a few, de Broglie
for example, tried to formulate alternatives such as the
“guiding wave” or the “double solution” models, which
were, by his own admittance, unsuccessful. Nevertheless,
until his last days, he continued to believe that a the-
ory maintaining some sort of particle independent reality
should be found [2]. Bohm, went a step further by pub-
lishing a consistent formalism which enables the existence
of a particle, while reproducing standard quantum expec-
tations [3]. Indeed some, such as Bell, have taken the view
that Bohm’s success presents a superior interpretation,

a e-mail: ron.folman@uibk.ac.at

while others thought differently [4]. Einstein with the EPR
paradox, Schrödinger with the cat enigma, and other im-
portant contributors, were also uncomfortable. We refer
the interested reader to some of the many available text-
books on the interpretation of the past and possibilities of
the future regarding quantum theory [5].

Simply stated, the measurement problem may be de-
scribed as follows: if there are two possible pointer po-
sitions (in the measuring apparatus), the superposition
principle maintains that any superposition of those two
pointer positions must also be a possible state. However,
such superposition states of macroscopic pointers have
never been observed [6]. In the language of the above single
particle double slit experiment: the superposition princi-
ple does not allow us to use the word particle if we are
to describe the evolution of the quantum system. How-
ever, the outcome of the experiment necessitates the use
of the word particle in contradiction to the superposition
principle. Even if one accepts Bohr’s escape route, which
divided the world into quantum and classical, one is left
with a fuzzy, impossible to define, border between the two.

A second class of models attempting to resolve the
measurement problem invokes “induced classical reality”
rather than “independent reality”. Here it is important
to clearly define what one means by the words “induced”
and “classical reality”. By “induced” we simply mean the
emergence of “classical reality” as an outcome of pro-
cesses, which depend on parameters such as time and
mass (or number of particles). By “classical reality” we
mean the emergence of statistical mixtures instead of
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superpositions. Namely, the Ball was “here and there” and
now it is “here or there”. The exact location (here/there)
of the Ball has randomly been chosen by nature but it
has been chosen. It makes no difference if this location
has been uniquely chosen in one world or in one out of
many. In the world in which we make the experiment, the
location has been chosen independently of any observer or
measuring apparatus. The latter must be at the basis of
any model attempting to explain why we see a classical
world.

Furthermore, it makes no difference if one wants to
stay within the framework of quantum theory and uni-
tary evolutions and thus can only speak of the emergence
of statistical mixtures rather than one unique location. A
statistical mixture is only a measure of our ignorance, and
any model wishing to describe the emergence of the clas-
sical world independent of man and his machines, must
agree that one location has been realized. We will later
see that indeed, whether one uses the language of a local-
ized wave function or of a statistical mixture, makes no
difference to the experimental prediction of our proposed
experiment.

One example of such a model would be the sponta-
neous localization through the GRW (Ghirardi, Rimini
and Weber) mechanism and its successors [7]. Another
example is what Folman and Vager described as the “non-
passive Bohmian particle” [8], which Bohm described as a
particle having influence on the wave function “... so that
there will be a two way relationship between wave and
particle” [9]. In this scenario, the wave function, which
determines the evolution of the system, is gradually dis-
torted by the particle and its location – away from the
form of superposition. There are numerous other hypoth-
esized models such as gravity based induced decoherence
(see Penrose [10]), but perhaps the most well-known model
of this class of “induced reality” models, is that of a “col-
lapse” due to the coupling to the environment. This is
usually referred to as Decoherence, which states in essence
that the reduced density matrix von Neumann called for
(having no off diagonal elements) may be arrived at nat-
urally through the entanglement of the system and the
detector to the environment (see Zurek [11]). Thus, in ad-
dition to the usual parameters of time, mass and spatial
separation (which are needed if we are to explain our ob-
servations), Decoherence correlates the loss of coherence
to the coupling onto the environment.

The question we would like to address in this note, is
how may we try and experimentally investigate the sec-
ond class of models so that their general validity would be
asserted, and also, how may we possibly differentiate be-
tween them. Furthermore, we would like to explore these
questions in the x-space (which is by admition of these
models the important space [12]) and with macroscopic
objects so as to be able to really examine the border Bohr
was trying to define. The latter requires of course the abil-
ity to observe the macroscopic system before and after it
decoheres.

To conclude, the motivation for such an experiment is
three-fold.

a. To observe the evolution of an isolated macroscopic
quantum system (an interesting observation in its own
right).

b. To observe the transition into a classical system
through the process of Decoherence.

c. If the coupling to the environment does not mask [13]
in magnitude and time other possible mechanisms such
as GRW, to try and experimentally observe other
mechanisms as well.

2 The experimental problem

There are two major experimental problems concerning
the observation of localization as a function of time, mass
and the variation of the coupling to the environment.

Problem I. It is hard to observe a quantum system
without coupling to it and initiating uncontrollable deco-
herence as part of the measuring process [14]. Namely, it
is well-known that measuring whether the Ball is “here or
there” results in the Ball being “here or there”. Hence,
if we are to learn about the inherent decoherence mecha-
nisms of nature such as the coupling of the environment to
our system, we are faced with the contradiction in which
we are not allowed to measure that which we are trying to
observe (namely decoherence in x space) i.e. the coupling
between our x eigenstate apparatus will mask the weaker
localization processes, which we want to investigate.

Resolution I. Use non-demolishing measurements in
which the system’s unitary evolution in the base of your
choice (in our case it will always be x), is not affected by
the measurement.

Here, it is interesting to note, that following a sug-
gestion for a gravitationally induced collapse model [10],
Schmiedmayer, Zeilinger and colleagues have also investi-
gated the idea of monitoring the behavior of a coherent
system in order to observe decoherence [15]. They made
the point that any “welcher weg” information would have
to be erased or not invoked in the first place, for such
an experiment to be performed. As will be shown in the
following, this is exactly the idea behind our proposed ex-
periment and why we consider it to be non-demolishing
(see Working assumption II).

Problem II. So far experimentally, observed coherent
systems in a state of spatial superposition are particles,
atoms or molecules. These are either too light to observe
localization in the time frame of the experiment, or, their
mass is fixed, making it hard to determine the proportion-
ality of localization to mass. Furthermore, particles in well
defined states of spatial superposition, are usually in mo-
tion, which makes the control of their environment a hard
task.

Resolution II. Keep particles only as probe while
turning the set-up into the observed system, which is in
a well defined spatial superposition, with a variable mass
and environment.

Finally we note that the affect of the environment, as
well as other parameters, on localization has long been the
subject of experimental interest, but as far as we know,
with no conclusive results regarding x-space and massive
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objects. For example, one such on going experimental ef-
fort concerns the handedness of chiral molecules [16]. An-
other experiment investigated decoherence of an “atom-
cavity field” entangled state, where the macroscopic
element was that of the phase difference between the
cavity fields [17]. Recently, several schemes have been
suggested aiming at directly investigating massive ob-
jects [18]. In this context, micro movable mirrors (which
are also discussed in this paper) have also been discussed
extensively [19] and realized [20]. This, however, as far as
we know, only in the context of cavity walls. In the follow-
ing we present what is to the best of our knowledge a novel
type of experimental procedure in the context of localiza-
tion, which may shed new light on the processes initiating
it. It relates to the issue of symmetry in quantum phenom-
ena, which is an underlying feature of the theory. Namely
that the difference between classical and quantum states
is that the phase between possible positions is lost, and
hence symmetry in space may exist between probabilities
but not amplitudes. In other words, in the transition from
Quantum to Classical, symmetry is conserved only as a
statistical average in the form of a statistical mixture (see
Working assumption I in the following).

3 The experimental assumptions

In reference [8], Folman and Vager proposed to incorpo-
rate the two experimental resolutions described above by
utilizing a symmetry experiment with a movable mirror, to
observe localization and decoherence. Their point was that
localization could be observed, not only by the breaking
of energy conservation of our isolated system (producing
photon emission) – as suggested by Pearle and Squires [7],
but also by the breaking of symmetry. However, they gave
little consideration to the experimental feasibility. In this
note, we expand the idea of the symmetry experiment to
include all models of the second type. We also include
different versions of the experiment, which may be more
realizable and conclusive. Finally, we also present initial
calculations to examine the experimental feasibility.

Before describing the experiment, we lay down
the foundation by emphasizing several fundamental
assumptions.

Working assumption I. The invoking of localization,
via models of the second type, destroys amplitude (wave
function) symmetry, even when we have not gained any
knowledge of which of the possible x-states has been occu-
pied. Namely, symmetric or anti-symmetric states become
asymmetric. Consequently, eigen-states of parity are lost.

This is obvious in the case of a collapse of a symmetric
superposition into one of the two locations (as proposed
by the GRW mechanism). In such a case, the resulting
wave function is asymmetric. However, even in the case of
Decoherence where only a statistical mixture of the two
positions emerges, one observes symmetry breaking e.g.
applying the parity operator on a two-by-two symmetric
density matrix (all elements equal 1/2) and taking the
trace, gives an average of +1, while repeating the same
procedure for a symmetric mixture (off diagonal elements

are 0 and diagonal elements are 1/2) gives a measurement
average of 0. For example, it is well-known that for lo-
calized chiral molecules having well defined handedness,
parity is not a good quantum number. In general, if this
working assumption were not valid, then it would follow
that a classical reality or at the very least the change of the
wave function, independent of man and his apparatuses,
has not been invoked by this second class of models, al-
though this was their main goal [21]. Indeed, symmetry of
the wave function must be lost as the loss of the relative
phase is an essential part of all localization schemes.

Working assumption II. Measuring parity does not
localize (i.e. decohere) the system in x-space.

This working assumption is self evident as the spatial
spread of the wave function remains unchanged by the
parity operator. Using once again the example of chiral
molecules, measuring parity does not induce handedness.
In another example, one is able to see x-space interfer-
ence fringes in the double slit experiment, although one
knows the parity of the incoming beam. Similarly, Scully
et al. [22] have shown in a “quantum eraser” experiment,
that sending excited atoms through optical cavities which
serve as “welcher weg” detectors, does not destroy co-
herency if the only knowledge gained is the parity (i.e.
both cavities were exposed to the same photon detector),
and no knowledge is available regarding at which cavity
the photon has been released.

Working assumption III. There are no other pos-
sible causes for symmetry breaking in our finite system,
aside from the hypothesized localization. Namely, if the
set-up is symmetric and the Hamiltonian conserves parity
(we neglect the weak force), any sign of symmetry breaking
must be due to localization.

Again, if this was not so, we would have observed sym-
metry breaking long ago, due to a breaking term in the
evolution operator. Remark: there could of course in prin-
ciple be interactions between our finite system and its sur-
roundings, that would change the symmetry of the former
with no connection to localization (decoherence). How-
ever, as will be shown later on, our experiment is sensitive
to the source of the symmetry change. Hence, we are able
to exclude in this working assumption, symmetry breaking
signals which are simply due to symmetry exchanges with
the out-side of our system. Namely, we are able to exclude
from our signal processes such as heating (i.e. the forma-
tion of a thermal state) or coherent excitation (i.e. the
formation of a superposition of bound states), and con-
clude that what ever symmetry breaking signal remains,
must be due to localization (i.e. the formation of a mixture
in position from the coherent ground state).

Following working assumptions I, II and III, we set out
to search for symmetry breaking effects.

4 The experiment

The first stage of the experiment includes the preparation
of a symmetric initial particle wave function Φi. This may
be done by the apparatus presented in Figure 1. D1 and
D2 are two particle detectors (if needed, with the ability
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Fig. 1. The closed loop interferometer. As the interaction re-
gion C is transparent, both paths are identical as they are
one of the same. S, D1, D2, BS, PS are the particle source,
the two detectors, the beam splitter and the phase shifter, re-
spectively. The eigen-states of the measuring system are parity
eigen-states. While transversing the apparatus, the initial sym-
metric wave function is exposed to the influence of the relevant
parameters such as time, spatial separation, and environment,
or any other symmetric interaction which we place at the in-
teraction region C. There is no reason for the outgoing wave
function to lose its initial symmetry and hence we expect no
“click” in detector D2, unless loss of coherence due to localiza-
tion has occurred.

to measure the particle’s energy). S is the particle source.
The phase shifter (PS) cancels the phase difference intro-
duced by the beam splitter (BS), between the phase of the
transmitted wave and that of the reflected. We of course
assume a perfect 50%/50% BS and a PS which is invari-
ant to changes (as is the BS) in the wave number. The
preparation apparatus then also serves as the measure-
ment apparatus with parity eigen-states.

The interaction region may hold several types of
experiments.

4.1 The closed loop interferometer

This interferometer has the distinct advantage of ensur-
ing symmetry, as its two optical paths are one and hence
identical.

In the simplest case, where we set out to examine in-
duced collapse independent of the environment, the inter-
action region may stay empty.

The two important parameters are time and mass (or
number of elementary particles). Mass could be controlled
by the size of the particles we send into the interfer-
ometer, and time by their velocity and the size of the
interferometer.

Dependence of localization on the environment, may
be examined by introducing a symmetric interaction
which would keep the Hamiltonian invariant to space
inversion along the position axis (e.g. magnetic or elec-
tric field or modulating crystal).
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Fig. 2. The open loop interferometer. Here, in addition to
what has been described in Figure 1, we position a two sided
foil mirror, held in an harmonic potential, into the interaction
region C. Hence, we entangle the transversing particle to the
state of the set-up, which is also in a well-defined quantum
state with a well-defined spatial uncertainty. Thus, we are able
to examine the quantum evolution of a macroscopic system.
Using parity eigen-states to measure the state of the outgoing
particle, we learn about the decoherence of the set-up, without
affecting it.

In all these cases, a “click” in D2 would mean that
the single particle initially arriving from S with a sym-
metric Φi has now transformed to a final Φf which is anti-
symmetric or asymmetric. As there are no reasons for Φf to
be anti-symmetric (see assumption III) we conclude that
Φf is asymmetric. In the single particle case some of the
asymmetric photons would end up in detector D2, telling
us that the particle was localized. This could be verified
by repeating the experiment with a multi-photon pulse
and observing hits on both detectors. As the collapse pos-
tulate cannot be responsible for the observed symmetry
breaking (see assumption II), we conclude that we have
observed induced localization (see assumption I).

4.2 The open loop interferometer

If we are not able to achieve coherent symmetric states
with very massive particles (needed if we are to observe
induced localization on the time scale in which the parti-
cles transverse the apparatus), or if we are unable to sat-
isfactorily control the particles’ environment while they
are in motion, we would have to resort to a more complex
experimental scheme which we describe here as the open
loop interferometer. Different from the previous interfer-
ometer, here, the interaction region is blocked by a second
symmetric quantum system. In this scheme, we loose the
simplicity of having only massive reflections but we gain
the possibility of observing a quantum object in a localized
potential, for long periods of time and with the ability to
control its mass and environment. Consider, for example,
the set-up of Figure 2.
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Here, a mirror has been placed in the interaction re-
gion. In this example, the mirror in the interaction region
(C) is actually a two sided reflecting foil which is in an
harmonic oscillator potential. Neglecting inner degrees of
freedom, such as those corresponding to the Debye-Waller
factors (since it is known that these factors also exist in
massive mirrors but still they reflect coherently), we take
account only of the center-of-mass of the foil, and note
that it is in a parity eigen-state (say, the even ground
state Ψi). We further note that Ψi is symmetric with re-
spect to the same symmetry axis as Φi. Namely, they are
both symmetric with respect to the axis that lies in the
plane of the beam splitter, which is also the plane of the
average position of the foil.

As the total initial wave function Ωi = Φi ⊗ Ψi

is symmetric and as the Hamiltonian is parity conserving
and invariant under the combined two reflections of the x′,
x′′ coordinates of the two wave functions, the final total
wave function Ωf must also be symmetric and hence it
may be defined as

Ωf =
∑

Φs ⊗ Ψs + Φas ⊗ Ψas (1)

where “s” and “as” stand for symmetric and anti-
symmetric, and the summation is over all possible foil
states (the latter is a general consequence of parity con-
servation. For a formal derivation with the specific co-
herent reflection Hamiltonian, see Appendices). We note
that these arguments are independent of the mass of the
foil C. It should also be explicitly stated that we have
been discussing parity although what is clearly evoked are
reflection symmetries. As the relevant parameters of posi-
tion and momentum all point along the position axis (see
figures), the problem is one dimensional and a rotation
which differentiates reflection symmetry from parity has
no effect. Consequently, the two symmetries may be con-
sidered one of the same. The polarization of light may also
be made to point along the position axis, or alternatively,
the set-up could be made invariant to the polarization.

Let us conclude. Changing the observation time, or
the environment or the mass of the foil, would allow us to
investigate the process of induced localization. Registering
a “click” in detector D2 and at the same time knowing
that the symmetry change the foil has undergone does not
maintain the final symmetry requirement of equation (1),
will indicate the occurrence of symmetry breaking and of
induced localization. Again, using a multi-photon pulse
may enable a complementary check to the single photon
probe.

Finally, changing the set-up slightly, one may pro-
hibit localization signals from detector D2 (i.e. only anti-
symmetric excitation events would “click” at D2), and
hence establish yet another complementary check on the
source of the deviations. This is what was referred to in
the remark of Working assumption III, when it was stated
that we are able to differentiate between symmetry break-
ing coming from the formation of a position mixture in
the ground state, and between other symmetry changing
sources such as heating or coherent excitation by the sur-
roundings of the system. As an example of such an ap-
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Fig. 3. The semi-closed loop interferometer. Here, we add two
massive mirrors to the set-up of Figure 2, so as to close the
interferometer loop. Consequently, an off center localization of
the foil mirror, would not hinder the equality of the two optical
paths. This, makes the set-up insensitive to localization signals
while still sensitive to external symmetry changing excitations
of the mirror foil, whether thermal or coherent, due to bad
isolation of our system, or apparent symmetry breaking which
is simply due to the initial state of the mirror not being in the
ground state (e.g. insufficient cooling). Hence, this set-up will
enable further verification of our understanding of the results.

paratus, we present the set-up of Figure 3. Here, massive
mirrors A and B maintain the loop actually closed.

We end this section by noting that the above presented
experimental procedure should be able to investigate any
model in which decoherence is also a function of mass,
time and/or state size. As these parameters are essential
in all models of the second type, we conclude that the
symmetry experiment may be utilized to investigate the
full range of models of this class.

5 Some numbers

Let us make some initial calculations for the open loop
interferometer, to show what kind of experimental proce-
dure would be needed to realize this experiment.

For the purpose of illustration, we start with the ex-
treme and simplistic demands that (a) we are in the high
resolution regime where the photon wave length is much
smaller than most possible mirror position deviations due
to localization, and (b) the foil is not excited during the in-
teraction with the photon i.e. its symmetry is not changed
by the foil-photon interaction. Let us elaborate:

(a) We demand that the wavelength λ of the prob-
ing particle be much smaller than the mirror localiza-
tion position Xloc which is of the order of the width W
of the ground state at interaction region C. If this were
not so, the localization relative signal would behave as
I2/I1 = tan2(4πW/λ) where I1 and I2 are the photon
intensities at detectors D1 and D2, coming from a lo-
calization event. Consequently, the absolute signal (D2)
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would become smaller and smaller. A derivation is given
in Appendix A. For now, let us then assume an har-
monic potential so that W =

√
~(n+ 1/2)/(mω/2) � λ

(which only differs by a factor
√

2 from the frequently
used W =

√
〈x2〉). If we take for example the photon as a

probing particle, and assume that we are able to use light
from X-ray to red at a wavelength of 0.1−1000 nm, and
system C is say in the ground n = 0 state, we find that
for X-ray (red):√

~
mω
� 0.1 nm (1000 nm) or mω � 10−14 (10−22).

(2)

(b) We demand that excitations be suppressed by the
maximally allowed energy transfer. We note that the max-
imum energy transfer by the photon cannot exceed that
allowed by momentum conservation, namely: 2(~k)2/m ≈
8×10−47/m which would mean in the case of a 108 nucleon
oscillator, an approximate transfer of 8 × 105 Hz. This
should be compared with the 104 Hz maximally allowed
energy spacing, under condition (2). This ratio between
the maximum transferred energy by momentum conserva-
tion and the maximally allowed harmonic energy spacing
is constant for all masses and wavelengths, and has the
value of (2(~k)2/m)/(~2/mλ2) = 8π2. Namely, momen-
tum conservation does not prohibit the harmonic oscilla-
tor system from being excited to at least one level above.
As we have taken |ki| and |kf | to be identical, the latter
calculation is of course only valid in the limit of massive
objects which due to their mass do not receive significant
recoil energy. For exact numbers, we would need to make
the quantum calculation which is simple enough. For ex-
ample, taking the ground state as the initial state, the
probability for the foil not to be excited is simply the well-
known Debye-Waller factor P0→0 which is for the case of
the X-ray, and again under condition (2), smaller than

exp(−~2(2k)2/2m~ω) = exp(−8~π2/λ2 10−14) ≈ 10−35

(3)

(the full calculation may be found in Appendix B). We see
that the energy transfer can actually be equal to many
times the harmonic energy spacing. Hence, we come to
the conclusion that working within the “high resolution”
W � λ regime and with non-excitation events, is not
feasible (this is true for both X-ray and red light).

We therefore move on to more realistic scenarios and
discard our two initial demands. It is clear that in order to
perform the experiment, it is not enough to measure the
symmetry of the outgoing photon; one must also know
the symmetry change of the mirror. For a single particle
experiment, we are left with two main options:

(a) calculate the expected foil excitation rate (to levels of
different symmetry) due to the foil-photon interaction
and subtract that rate from the signal at D2;

(b) know whether the mirror has been excited and if so
to what level, by measuring also the energy of the
outgoing photon at D2.

Let as elaborate: (a) here, we intend to gain control over
unwanted foil excitations by simply preparing an experi-
mental procedure in which P0→n(odd) (i.e. the expected ex-
citation signal at D2) is well-known. Namely, by knowing
what the expected “noise” in D2 is (i.e. the anti-symmetric
photons coming from excitation events), one can differen-
tiate between the signal at D2 and the “noise”. However,
for the experiment to be feasible, one must make sure that
the noise does not overwhelm the signal – especially now
that the strength of the signal is not ensured, as we no
longer enforce condition (2). Hence, we need to calculate
the values of the ratio

R =
1− P0→n=0,2,4,...

g(τ)I2/(I2 + I1)
(4)

where,

I2
I2 + I1

=
∫ +∞

−∞
f(Xloc) sin2(4π

Xloc

λ
)dXloc (5)

is the average probability of receiving a click at D2 when
a localization has occurred, where sin2(4πXloc/λ) was cal-
culated in Appendix A, and where the average is over,

f(Xloc) = Ψ†0 (Xloc)Ψ0(Xloc) (6)

which is identical to the initial state position probability
distribution, which is simply for our example, the har-
monic ground state Ψ0.

g(τ) is the localization probability after time τ , which
will be different for different localization models. Keeping
to a general frame, we will in the following set g(τ) = 1
which simply means that between preparation and mea-
surement one waits long enough. Obviously, to differenti-
ate between different localization models one would then
shorten τ or change the foil mass and temperature in order
to find which model fits best with the observed g(τ).

Finally, we note the obvious which is that onceR is cal-
culated, one may easily extract the expected deviations in
D2 from the signal expected from the standard symmetry
breaking source referred to above as “noise”. Once again,
these deviations are what our experiment is searching for.

(b) Here, we intend to identify which clicks at D2 are
simple excitation “noise” by measuring also the energy of
the detected photon at D2. If the energy difference be-
tween the initial and final photon corresponds to a foil
excitation between levels of different symmetry (e.g. from
the ground state to the first odd state), this event will be
discarded as having a standard quantum origin. Indeed,
this is a straight forward option which does not have any
dependence on the validity of calculations as those sug-
gested above. Furthermore, as in this option the symmetry
change of the mirror is directly measured, it will not be
sensitive to external sources of symmetry breaking, such
as those discussed in work assumption III, and will thus
not need further verification set-ups like that presented in
Figure 3. The latter and the fact that the mirror does not
have to be cooled to its ground state (for the same reason),
are the clear advantages of this option. However, as will be
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shown, limited available detector energy resolution, limits
its usefulness.

In the following section we investigate these two propo-
sitions, and also touch upon the issue of a multi-particle
probe.

6 The proposed experimental procedure

In this section we elaborate further on the ways in which
the experiment may be performed. As an example we take
the probe particle to be a photon. These are two options
which will be dealt with in the section.

a. Single photon experiment, where the search will be
for deviations in the overall detector intensities iD1 and
iD2 from the standard quantum ratio between symmetric
and anti-symmetric photon final states due to expected
photonic foil excitations. Here, many repetitions of the
same single photon experiment will enable us to directly
measure the ratio between symmetric and anti-symmetric
final states, which in turn is a consequence of the excita-
tion probabilities. Hence, we will be able to measure the
excitation probabilities in a quantum macroscopic system
and to be sensitive to deviations which are due to local-
ization. Remark: even if for some reason (e.g. coherent
excitation of the foil to higher odd states by the environ-
ment) our calculation of P0→odd is an under estimate (as
it was estimated for the isolated system), one would still
be able to detect deviations due to localizations, as ex-
plained in the remark of Working assumption III and the
text concerning the set-up of Figure 3.

Starting from the ground state one may also consider
a multi-photon (pulse) experiment, where iD1/iD2 are dif-
ferent for a symmetric outgoing pulse, an anti-symmetric
outgoing pulse and an a-symmetric outgoing pulse. Here,
a localization event may be detected by the abnormal in-
tensity of a single pulse split at the beam splitter. The
immediate and clear advantage of a multi-photon pulse
experiment, is of course the fact that a single experiment
(i.e. one pulse) can detect a localization. The clear signal
would be an intensity split ratio which is classically related
to the Xloc of the localization, as described in Appendix A.
Again, integrating over all observed localization signals,
should of course be in agreement with the density function
of the ground state. The important issue at hand is: what
would be the signal coming from non-localization events
(coherent excitation and non-excitation events). We leave
further discussion of this option to a dedicated note.

b. Single photon energy measurement experiment,
where the outgoing photon discloses both its symmetry,
and that of the foil. See elaboration in the following.

Experiment a: to see if this experimental procedure al-
lows for a reasonable signal over noise ratio, and for what
values of the parameters it does so, we calculate R as a
function of m, λ and ω. As mentioned before, we ignore
the internal degrees of freedom (based on the coherent re-
flection of visible light mirrors and X-ray gratings) and
treat the center-of-mass motion of the mirror. Namely, as
in the Mössbauer effect, there are no excitations of in-
ternal degrees of freedom. Whether or not this is a good
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dashed line qualitatively presents the general expected form of
R (see text). Note that the Lamb-Dicke limit is only valid for
η � 1. One should also note that the signal itself I2/(I2 + I1)
falls as η approaches zero, but it maintains reasonable values
(0.01−0.43) for η between 0.1 and 1 (see Appendix C.2).

approximation, depends on the specifics of the incoming
wave and the mirror, including its thickness and material
(see in the following, discussion regarding the extinction
coefficient in section “Mirror, vacuum and preparation”).
With the above assumption, and in the Lamb-Dicke limit
(see full calculation in Appendix C), we find R to be

R =
η2 + (higher orders)

I2/(I2 + I1)
(7)

where η is the Lamb-Dicke parameter
√
Er/~ω =

4πW/
√

2λ (Er is the recoil energy), where we have ne-
glected factors which appear in Appendix C.1, and where
the denominator is calculated in C.2.

We note that the Lamb-Dicke regime may be an ad-
vantageous one as the mirror frequencies are higher and
perhaps easier to achieve, but mostly as the energy level
spacing is larger and hence cooling to the ground state is
a less formidable task. Of course, whether or not a system
is in the Lamb-Dicke limit depends on the chosen experi-
mental parameters. Out side the Lamb-Dicke regime, one
may easily evaluate the qualitative behavior of R by first
looking at the upper bound of R, namely,

Rbound =
1− P0→0

I2/(I2 + I1)
(8)

(this simple enough calculation is also presented in
Appendix C). The rather striking “inversion” in Rbound

seen in the Figure 4, is dependent on the mass of the
foil, its frequency and the frequency of the impinging
light, only via the parameter η! For X-ray and 1015 par-
ticles, the frequency of the foil as a function of η is ap-
proximately f = 10−1/η2 Hz. This means that in order
to observe the inversion in Rbound, one would have to
work in the regime of low (but realizable) frequencies.
However, it is expected that the “inversion”, would not
be experimentally observable in full; as can be readily
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seen from the Debye-Waller expression in equation (3),
which simply equals exp(−η2): P0→0 < 10% (> 90%)
for η > 1.5 (< 0.3). One may then roughly assume that
for the first case 1 − P0→0 → 2 (1 − P0→n=0,2,4,...) since
P0→0 → 0 and P0→0,2,4,... → 1/2. Similarly for the sec-
ond case, 1 − P0→0 → 1 − P0→n=0,2,4,... since P0→0 → 1
and P0→0,2,4,... → 1. Hence, we find respectively that for
η > 1.5: R → 1

2Rbound, and for η < 0.3: R → Rbound.
Consequently, this means that instead of observing the
full “inversion” one should be able to observe a peak in
the value of R for η in the region of 0.9. This is qualita-
tively described in Figure 4 as well.

As R ≤ Rbound, the experimental sensitivity for the
various values of the experimental parameters, will be
better than that indicated by the bound. Observing the
above form of the dependence of R as a function of η,
may serve as yet another verification that the deviations
that are observed at detector D2, indeed originate from
localizations. For example, for a constant 10 Hz foil fre-
quency, the range of 0.1 < η < 2 could be scanned
by simply changing the mass of the foil in the range
1012 < no. of particles < 1015.

As for red light, one can easily see that for 1015 par-
ticles f = 10−9/η2 Hz, which means that although one
may perform the experiment with red light (reasonable
anti-symmetric “noise” to signal ratio), one is not able
to explore the “inversion” regime, as the needed foil fre-
quency would be far below 1 Hz (which would probably
be mechanically hard to achieve. See following section:
“Mirror, vacuum and preparation”), or alternatively, the
needed foil mass would be extremely small, and in order to
observe decoherence, one would have to maintain a stable
and isolated experiment, for long periods of time. Nev-
ertheless, if one has enough statistics, one may try and
observe the logarithmic behavior of R for smaller values
of the η parameter. In any case, it should be once again
noted, that as the observation of the peak or logarith-
mic behavior are mere verifications, the experiment itself
could be performed with a large range of light and mirror
frequencies.

Finally, we add that although in general, localization
times in the different models depend on the number of par-
ticles or the mass, some models also take into account the
spatial separation. For our bound mirror foil, the larger
the mass, the smaller the ground state size and hence the
position uncertainty, which constitutes the separation be-
tween the different possible positions. Thus increasing the
mass will on the one hand shorten the decoherence time
but on the other hand prolong it. It is therefore clear that
the exact parameters needed in order to achieve decoher-
ence on the experimental time scale, are model dependent.
However, it is also clear that any model attempting to ex-
plain the “localization of the pointer” must also predict
the localization of our mirror. It remains to adjust the ex-
perimental parameters so that the predicted decoherence
times are within the experimental time scales.

Experiment b: as explained in the previous section,
one clear advantage of this option is the fact that the
symmetry change of the mirror is directly measured, by
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Fig. 5. Needed energy resolution ∆E/Eγ as a function of the
number of foil nucleons, for the two examined extremes of the
feasibly used light spectrum: X-ray and red (in dashed line).
As an example, two η values, which correspond to reasonable
suppression factors of the localization signal (see caption of
Fig. 4), are given.

measuring the energy loss the photon clicking at D2 has
suffered, and assuming that the only possible transfer of
energy is for the excitation of the mirror foil. This avoids
the need for further verifications, such as that suggested
in Figure 3, excluding other sources of symmetry break-
ing (such as some external mechanism through which the
mirror is excited) which are referred to in work assump-
tion III. Another clear advantage is the bypassing of the
need for cooling the mirror into an initial ground state;
As the symmetry change of the mirror is now measured
directly, the initial symmetry of the mirror is not crucial
any longer. Let us elaborate. As the energy level spacing
of the mirror ∆E = ~ω is known, being able to resolve the
energy loss of the photon with an accuracy much better
than∆E, would enable us to know how many energy levels
the mirror has jumped. Obviously, an odd number jump
would mean a symmetry change in the mirror while an
even number jump would mean that the out going photon
must maintain its initial symmetric form, unless of course
a localization event has occurred.

Taking as the observation limit a detector energy res-
olution of ∆E = ~ω, the needed relative energy resolution
∆E/Eγ in order to be able to take account of the foil ex-
citation (e.g. make use only of non excitation events), as a
function of the number of particles in the foil, is presented
in Figure 5.

As can be understood from the figure, for a constant η
the needed resolution is harder to achieve as the number
of particles grows. This is a direct outcome of the defini-
tion of η in which for a constant η, the number of particles
is inversely proportional to the oscillator frequency. Obvi-
ously, as the mirror oscillation frequency becomes smaller,
it will be harder to resolve from the photon energy mea-
surement, what excitation has occurred in the foil, as the
energy level spacing becomes smaller. Nevertheless, in the
following it is shown that present resolutions already en-
able us to perform some versions of the experiment.

We now turn to discuss some technical but nevertheless
crucial aspects of the experiment.
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7 Mirror, vacuum and preparation

In the previous paragraphs, we calculated the excitation
probability without taking into account the specific fea-
tures of the mirror. Obviously, a full account of the mir-
ror features has to be made. This is not just a matter
of the mirror’s material. The mirror’s thickness may also
dominate the ability of the mirror to reflect or to have a
wanted ground frequency (e.g. of the order of the example
10 Hz). In the following we present some preliminary clas-
sical considerations which will have to be followed when
constructing the mirror.

For example, if one takes an atom to have a vol-
ume of 10 cubic Angstrom, then a 1 mm2 mirror, would
have a thickness of only 10−1000 atom layers for 1013

to 1015 atoms. The question then arises if such a small
thickness can have non-negligible reflectance. Taking per-
pendicular impinging beams (i.e. parallel and perpendic-
ular polarisations give rise to the same border reflection),
and for simplicity ignoring interference between reflec-
tions coming from the two mirror boundaries, one should
expect reflection from each of them, with a strength of
|(N1−N2)/(N1 +N2)|2 where N1 and N2 are the complex
indices of refraction of the mirror and its surroundings
(N = n+iκ, where n is the index of refraction and κ is usu-
ally referred to as the extinction coefficient. If n/κ � 1,
then κ may be neglected in the above calculation). From
the latter it is clear that in order to reflect, the mirror ma-
terial must be immersed in an environment with an index
of refraction different than its own, or alternatively, when
this is hard to achieve such as for X-ray, the mirror should
be constructed to Bragg reflect the light. It is also impor-
tant to note that even a large transmittance probability
does not hinder the experiment as these non interacting
photons arrive at detector D1 and thus do not contami-
nate the small symmetry breaking signal at D2. It is how-
ever true that the transmittance probability will have to
be verified independently so that the D1 signal may be
normalized and consequently so that true values of I2 and
I1 may be extracted. κ also affects the internal scatter-
ing and heating of the mirror. As this process is able to
contaminate the small signal at D2 it will be important to
suppress it. A small κ ensures that the internal absorption
1−exp(−2kκx) will remain small (where k is the wave vec-
tor of the incoming wave and x is simply the propagation
distance of the wave within the material). Experimental
values for the extinction coefficient in the X-ray region are
usually of the order of 10−6 to 10−7 [23]. Making use of
these numbers and a mirror thickness of 100 Å, one finds
an absorption of less than 1%. Of course, a more accu-
rate account should also take into consideration factors
like the dependence of the extinction coefficient on tem-
perature, errors rising from roughness and contamination
of the mirror surface, etc. [23]. For red light, having in
general higher extinction coefficients, absorption should
be seriously considered.

One should also consider the mechanical properties of
such a mirror. Namely, can the mirror be fabricated to
have the example frequency of 10 Hz. It is well-known that
rectangular or circular plates with clamped edges have

a fundamental (0, 0) mode frequency of order CLh/L
2

(times 1.654 or 0.4694 for rectangular and circular, re-
spectively), where L is the dimension of an oscillating
plate of thickness h and CL =

√
E/ρ(1− ν2) is the

velocity of sound in the plate [24]. E is Young’s mod-
ulus. Taking for example metals, E is in the order of
10−20×103 N/m2, ρ is the density, which for metals is in
the order of 10−20× 103 kg/m3, and ν is Poisson’s ratio,
which is 0.3 for most materials. Taking the thickness to
be 100 Å and the mirror to be of dimension 1 mm, one
finds that the frequency will be of the order of 10 Hz as
required.

Next, we touch upon the important issue of the vac-
uum environment of the mirror. Working within the
regime of extremely small η in which the foil excitation
probability in negligible (e.g. from the Debye-Waller fac-
tor of exp(−η2)), obviously has its advantages, but also its
price: As explained in the caption of Figure 4, the signal
I2/(I2 + I1) is strongly suppressed for small η values. In
such a case, for the experiment to work, different sources of
noise (e.g. a thermal tail of the foil level population above
the ground state) have to be suppressed to the same level.
Alternatively, one could work in the foil-excitation regime
and gain control over such unwanted excitations, in ways
decried previously in this work. However, here also a price
must be paid. In such a scenario, it is plain that back-
ground gas particles, having more momentum than the
photons, would excite the foil in an uncontrollable way
into unknown initial states – inhibiting us from isolating
localization signals. Consequently, it is evident that the
experiment (including mirror preparation) must be con-
ducted in a time much shorter than the mean time sepa-
ration between background gas collisions with the mirror.
This is indeed realizable since low temperature (≈ 1 K)
vacuums may reach 10−18 mbar [25], which means a par-
ticle density of 107 m−3 and a hit frequency of 103 s−1

for a 1 mm2 mirror. One would also be able to verify the
affect of the background gas by changing the mirror sur-
face area and taking into account the straightforward hit
frequency scaling law as a function of the area.

Last, we consider the issue of system preparation. It
is clear that for the experimental idea presented in this
paper to work, the symmetry change of the mirror dur-
ing the experiment has to be known. If one is to achieve
this through preparing the mirror in the harmonic ground
state, one must be able to cool the mirror sufficiently in
order to ensure the latter. Indeed, Mancini, Vitali and
Tombesi [26], have shown that through radiation pressure
modulated by a homodyne feedback which senses the posi-
tion of an oscillating mirror, one is able to effectively cool
the mirror. Their idea has already been realized success-
fully [27]. In Appendix D it is shown that this method may
be extended to temperatures of 1 mK and below. In such
a case, one finds that for an η of order one, a 109−1012

particle mirror can be cooled to its ground state – de-
pending on its Q factor, where Q = ωτ and where ω and
τ are the frequency and the mechanical relaxation time
of the mirror, respectively. It should be noted that even
the small reflectance of a 109 particle mirror, consisting
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for example of a surface of 10 µm× 10 µm and a 10 atom
layer surface, will not hinder the experiment as transmit-
ted photons will not change their symmetry and hence not
add to the noise in D2.

Alternatively, the initial state of the mirror can also be
a higher state, be it of odd or even symmetry. As explained
in Sections 5 and 6, in such a scenario, one would have to
resort to energy measurements of the outgoing photon in
order to choose only the non excitation events or those in
which the symmetry of the foil has not changed. Here also,
a larger Q factor would enable such a measurement for
larger masses [28]. Taking as a benchmark, an energy de-
tection resolution of 10−13 of the photon energy, one finds
from Figure 5, that in the region of η = 1, the experiment
can presently be done with a 109 (105) particle mirror,
for X-ray (red) light. One should note that a 109 particle
object will decohere in very long time scales according to
models such as the original GRW proposal [29] – rendering
the experiment realistically unsensitive to this low mass
range. However, updated models such as the Continuous
Spontaneous Localization model [7], predict much shorter
collapse times. Moreso, other models such as that of envi-
ronmental decoherence, predict yet even shorter decoher-
ence times [13], and so it seems that even for the short
time scales discussed above in the context of the vacuum,
the experiment will be sensitive to many of the models of
the second type, already in the mass region of 109 parti-
cles.

To conclude, analyzing the mirror features, the issue
of vacuum and the above two preparation scenarios, and
noting that a 1010 particle foil oscillator has already been
nano-fabricated [30], we find that the suggested experi-
ment stands at the edge of present technology, and some
versions of it are already now realizable.

Finally, we discuss environmentally induced decoher-
ence.

8 Observing environmental decoherence

Before the end of this paper, we would like to revisit the
issue of the work assumptions. The working assumptions,
which have been presented in the beginning of the pa-
per, form the underlying logic behind the hypothesis that
the symmetry experiment should exhibit sensitivity to all
models of the second class. However, the different mod-
els of this class have slightly different features and hence
require finally a separate examination in order to pre-
dict how the symmetry experiment would evolve for each
model. These model specific analyses will be examined
in the future and in the following we present some pre-
liminary considerations. The latter will mainly focus on
Decoherence (i.e. environmental) as it is perhaps more
widely accepted and as it has been suggested that due to
its magnitude, it will mask other hypothesized processes
(see introduction) and hence will be the main observable
of this experiment.

The first parameter to be evaluated if the symmetry
experiment is to be realized is τdec – the time of deco-
herence. The experimental time resolution must of course

be better than τdec if we are to observe the transition
from Quantum to Classical. From the finite temperature
equation τdec = γ−1(λdB/∆L)2 where γ is a relaxation pa-
rameter and the other two parameters are the de Broglie
wave length and the coherency length [11], it is clear that
well isolated macroscopic bound states may be defended
against decoherence for long periods of time. Indeed, in
the latter reference, Zurek gives the example of a massive
Weber bar in cryogenic temperatures. Nevertheless, it is
also clear that the specific environment of the experimen-
tal realization will have to be scrutinized to great detail
in order to arrive at correct estimates for τdec.

A second issue which will have to be closely exam-
ined is the evolution of the initial state into the statistical
mixture and the consequential magnitude of the symme-
try breaking and its observed signature. In our proposed
experiment, the magnitude of the symmetry breaking is
simply 2∆x, where ∆x is the distance between the cen-
ter of the “Classical state” and the mean position (in
our case at x = 0). For example [31,32], if the system-
environment Hamiltonian is such that final states (the
so-called “pointer states”) have exactly the same x-space
width as the initial states, the ∆x of our experiment and
the symmetry breaking signal would disappear. As the
“pointer states” become sharper relative to the initial
state, the statistical mixture is more pronounced, ∆x is
larger, and the observed signature in detectors D1 and
D2 (as explained in Appendix A) will be larger. Again, as
for τdec, here also there are clear examples of situations
in which the relative sharpness of the pointer states is
adequate.

9 Outlook

In a sequential paper, we will specifically treat the pre-
dictions of the different models of the second type in the
context of the symmetry experiment. There, we will also
address in more detail questions such as that of system
preparation and the evolution of the mirror into a statis-
tical mixture of states – time scales and final states.

One should of course also thoroughly examine the mir-
ror model and other realistic mechanisms which are able
to produce an asymmetric signal.

As for mirror isolation, schemes superior to the nano-
fabricated foil, may include a charged mirror in an ion
trap, or a magnetic or diamagnetic mirror in a magnetic
trap [38].

Finally, one should note that other, perhaps advan-
tageous, possibilities for the interaction region C, may in-
clude large atoms or molecules or perhaps even condensate
gases, in a trap with very long coherence times.

10 Summary and conclusion

We have discussed the class of induced localization mod-
els, among them Decoherence. We have shown that if these
models comply with several assumptions, essential to their
philosophy, then, a symmetry based experiment should be
able to investigate the hypothesized loss of coherency.
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| exp(i[k(x+ 2Xloc)]) + exp(i[k(x− 2Xloc)])|2
| exp(i[k(x + 2Xloc) + π/2]) + exp(i[k(x− 2Xloc) + 3π/2])|2 =

|[exp(i2kXloc) + exp(−i2kXloc)] exp(iπ)|2
| exp(i2kXloc) exp(iπ/2) + exp(−i2kXloc) exp(i3π/2)|2 =

cos2(2kXloc)

sin2(2kXloc)

The proposed symmetry experiment will hopefully be
able to investigate three important regimes: the evolution
of an isolated macroscopic quantum system, the transition
into localized states, and the different predictions of the
various models of the second type.

One of us (R.F.) is grateful for enlightening discussions with
Professors Anton Zeilinger, Zeev Vager, Yakir Aharonov, Bill
Phillips, Wojciech Zurek, Juan-Pablo Paz and Jeffrey Bub. We
are also thankful for helpful comments made by Markus Gangl.

Note added in proofs

We have lately received a number of requests for clarifi-
cation regarding the fundamental reason behind the fact
that the symmetry experiment reveals no “which path”
information. It is quite clear that the photon measure-
ment produces no such knowldege as the eigen states of
the measurement are parity eigenstates. What seems not
to be so clear to some people is why no such traces are
left in the foil. In the following we try and clarify this
point. What ever the final state of the mirror is, one can
express it in the basis of harmonic eigenmodes. In order to
conserve symmetry and energy, each such mode is entan-
gled with a specific (symmetry and energy) photon final
state (see Eq. (1)). As our measuring device has parity
eigen states, it will always collapse the photon into a spe-
cific parity state and with it the mirror will collapse into
the appropriate harmonic eigenmode, in which there is no
which way information as it received no momentum. If the
mirror was excited into a higher mode, it has indeed re-
ceived energy, but energy does not reveal any which path
information. Similarly, because of the collapse of the final
photon into a parity state, the environment of the mir-
ror (i.e. its holders) did not receive any mean momentum.
Here, no which path information is ensured by the fact
that the momentum uncertainty of the massive holders
is much bigger than the 2k momentum kick given by the
photon.

Appendix A: Localization signal

Let us assume the foil C is localized at distance |Xloc| from
the x = 0 symmetry axis.

Let us now assume a normal plane wave exp(ikx)
where k is the absolute value of the wave number. Di-
viding away the normalization and other identical factors,
and remembering that the phase shifter cancels the phase
difference introduced by the beam splitter (here for exam-

ple we take π/2), one finds for I1/I2 for a single event:

see equation above

where, for simplicity, we have neglected taking account of
the expected non-negligible transmittance of the mirror,
due to its small thickness.

One should also consider the fact that in a bound state
it could be that localizations would cause excitation to
higher quantum levels with specific parity, rather than
ending up as the localized asymmetric states we are con-
sidering here [7]. Hence, in a real experiment, this rate
should be calculated and subtracted from the signal.

Appendix B: Debye-Waller factor

Let us calculate the Debye-Waller factor for the foil.
First, we expand the ground state in the momentum

basis |i〉 =
∑
k′ |k′〉〈k′|i〉 and note that exp(−ik∆x) op-

erating on a plane wave state, changes the wave num-
ber by an amount k∆ which is simply the difference be-
tween the incoming photon wave number k1 and that
of the outgoing photon k2 i.e. k∆ = k1 + k2 namely,
exp(ik∆x)|k′〉 = |k′ − k∆〉. Summing over all k′ one gets
the familiar |f〉 = exp(−ik∆x)|i〉. Now,

P0→n =
∣∣∣ ∫ Ψ†0 (x)(K+ +K−)Ψn(x)

∣∣∣2 (B.1)

where K+ = 1
2 (exp(−ik∆x) + exp(ik∆x)) and K− =

1
2 (exp(−ik∆x)−exp(ik∆x)) are simply the symmetric and
anti-symmetric kick operators. The factor 1/2 in theK op-
erators, which comes from the normalization of the pho-
ton wave function, ensures that although different from
the standard Mössbauer calculation i.e. here we have a
kick from both sides, the result stays the same (see Ap-
pendix C).

Let us now calculate P0→0. We note Qn(x) =
Ψ†n(x)Ψn(x) as the density operator and find:

P0→0 =
∣∣∣ ∫ Ψ†0 (x)K+Ψ0(x)

∣∣∣2
≈
∣∣∣ ∫ Q0

1
2

(2− (k∆)2x2)
∣∣∣2 =

∣∣∣ ∫ Q0 −
(k∆)2

2

∫
Q0x

2
∣∣∣2

=
∣∣∣1− (k∆)2

2
〈x2〉0

∣∣∣2 ≈ 1− (k∆)2〈x2〉0

≈ exp(−(k∆)2〈x2〉0) = exp(−~2(k∆)2/2m~ω). (B.2)

As for this case k1 = k2 since there is no energy transfer,
the final result is

exp(−2~2k2
1/m~ω). (B.3)
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The above probability for the foil not to be excited is
simply the well known Debye-Waller factor for the case of
reflection.

Appendix C: Excitation probabilities

1. In the previous appendix, we presented the classical
quantum calculation for the Debye-Waller factor. In the
following, we present the same calculation but in the lan-
guage of annihilation and creation operators, in a way
which can be easily expanded to calculate excitation prob-
abilities to all levels. Furthermore, in this appendix we
rigorously describe how the system Hamiltonian allows for
excitations to both symmetric and anti-symmetric states.

Let us consider H the total coherent scattering Hamil-
tonian of our system Hlight +Hc.m.−mirror +Hpolarization +
Hinteraction to be:

~ν(â†+â+ + â†−â− + 1) + ~ω
(
b̂†b̂+

1
2

)
+ ~µ(ĉ†ĉ+

1
2

)− αE2 (C.1)

where ν, ω and µ are the frequencies of the light, mir-
ror and polarization, respectively, and â, b̂ and ĉ, are the
usual creation and annihilation operators. â+ and â− de-
note photons going right and left along the x-axis of the
experimental set-up described earlier. α is the polarizabil-
ity and E is the electric field of the incoming light, which
is simply:

E = ε
{
â+e(ikx) + â−e(−ikx) − â+e(−ikx) − â−e(ikx)

}
ẽ

(C.2)

where ẽ = i
√
~ν/2ε0V and ε is the polarization vector

(P = αE is usually denoted as the polarization of the
medium. Here, for simplicity, we neglect the variation of
P as a function of x. For wavelengths short compared to
the thickness of the mirror, this will of course have to
be taken into account. We also note that expressing P in
terms of (ĉ+ĉ†) as is usually done, and using the adiabatic
approximation dĉ/dt = i[H, ĉ] = 0 to calculate ĉ, gives the
same result). Hence we find for Hint,

− α
{

(2â+â− − â+â
†
+ − â−â†− − â†+â+ + 2â†+â

†
− − â†−â−)

+ (â+ − â†−)2e(i2kx) + (â− − â†+)2e(−i2kx)
}
ẽ2. (C.3)

Noting that the first term is responsible for off-energy-shell
(virtual) photons and phase shifts, we write:

Veff = αẽ2
{

(â+â
†
− + â†+â−)2 cos(2kx)

+ i(â+â
†
− − â

†
+â−)2 sin(2kx)

}
. (C.4)

We see here, how Veff has the ability to excite the foil into
a symmetric state while leaving the photon wave func-
tion symmetric, or alternatively, to excite the foil into
an anti-symmetric state while changing the photon state

from symmetric to anti-symmetric. Expressing the latter
formally, we note:

|Ψ(0)〉 =
1√
2
|0〉m(|1〉|0〉+ |0〉|1〉)p (C.5)

where m means “mirror” and p “photon”. As
(i/~)(d/dt|Ψ(t)〉 = H0|Ψ(t)〉 + Veff |Ψ(t)〉, the changes in
the wave function will be proportional to:

2 cos(k∆x)|0〉m
1√
2

(|1〉|0〉+ |0〉|1〉)p

+ 2i sin(k∆x)|0〉m
1√
2

(|1〉|0〉 − |0〉|1〉)p (C.6)

where k∆ has been defined in the previous appendix. The
relative excitation probabilities will thus be:

P0→n(even) =
α2ẽ4

~2
|〈n| cos(k∆x)|0〉|2 (C.7)

and

P0→n(odd) =
α2ẽ4

~2
|〈n| sin(k∆x)|0〉|2 (C.8)

Let us calculate P .
In the Lamb-Dicke limit [33], η =

√
Er/~ω =

k∆
√
~/2mω = 4πW/

√
2λ � 1, where η is the Lamb-

Dicke parameter, W the size of the harmonic potential
ground state, λ the wavelength of the impinging light, m
and ω the mass and frequency of the oscillator, and Er

the recoil energy. As can be readily seen, in this limit the
ground state size (or recoil energy) is much smaller than
the wavelength of the incoming beam (or oscillator energy
spacing). Hence, an expansion of the excitation matrix el-
ement in powers of η, is allowed. Making use of our typical
numbers (i.e. m = 1015 particles and ω = 2π×10 Hz), one
finds that our system is within this limit for the full range
of X-ray to red light. This limit is of course very different
from our initial demand of

√
~/mω � λ, which results

for the same mass and frequency range, in extremely low
values for the harmonic oscillator frequency. It is also very
different than the parameter regime which one would need
in order to observe the described form of R. We now turn
to calculate the probability for excitation to the even and
odd states. Using the results of the previous appendix and
the above definition of η, and using the normal convention
for the position operator x̂ = (~/2mω)

1
2 (â+ â†), we find:

P0→n(even) =
∑
n

|〈n| cos[η(â+ â†)]|0〉|2

≈
∑
n

|〈n|1− 1
2
η2(â+ â†)2|0〉|2 = 1− η2, (C.9)

P0→n(odd) =
∑
n

|〈n| sin[η(â+ â†)]|0〉|2

≈
∑
n

|〈n|η(â+ â†)|0〈|2 = η2, (C.10)
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where we expanded up to second order in η, and where all
probabilities should be multiplied by α2ẽ4/~2 and by the
total photon scattering probabilityΩ. A very smallΩ (e.g.
due to small thickness), will cause the overall intensity in
D2 to be much smaller than that calculated above, as P
are calculated only for the portion of the photons which
are scattered.

2. In order to calculate Rbound, one simply needs to
calculate I2/(I2 + I1), as we have already calculated P0→0

in the previous appendix.
As noted, I2/(I2 + I1) is the probability that a click

is received in detector D2 when a localizing event has oc-
curred at the mirror. From Appendix A, we have that a
specific localization at Xloc gives rise to I2/(I2 + I1) =
sin2(4πXloc/λ). In order to average over all possible val-
ues and probabilities of Xloc, one has to integrate over
the localization location probability distribution f(Xloc)
which is nothing more than the initial state position
distribution

f(Xloc) = Ψ†0 (Xloc)Ψ0(Xloc) (C.11)

where in our example Ψ0 is simply the harmonic ground
state (mω/π~)1/4 exp(−mωx2/2~).

Defining, a =
√
mω/~ and b = 8π/λ we find that the

integral that needs to be evaluated is:

I2
I2 + I1

=
a√
π

∫ +∞

−∞
exp(−a2Xloc

2) sin2

(
b

2
Xloc

)
dXloc.

As∫ ∞
0

exp(−a2x2) cos(bx) =∫ ∞
0

exp(−a2x2)
(

1− 2 sin2

(
b

2
x

))
and as ∫ ∞

0

exp(−a2x2) =
√
π

2a

and ∫ ∞
0

exp(−a2x2) cos(bx) =
√
π exp(−b2/4a2)

2a

one finds:∫ +∞

−∞
exp(−a2x2) sin2(

b

2
x) =

√
π

2a
(1− exp(−b2/4a2)).

Hence we find: I2/(I2 +I1) = (1−exp(−16π2/λ2a2)/2 and

Rbound =
1− P0→0

I2/(I2 + I1)
= 2

1− exp(−8π2/λ2a2)
1− exp(−16π2/λ2a2)

·

(C.12)

Appendix D: Ground state cooling

In one of the experimental schemes proposed in this pa-
per, the center of mass of the mirror has to be prepared
in its motional quantum ground state. Cooling a macro-
scopic object to its motional gound state seems to be a
prohibitive task, since up to now it has been achieved only
for single ions in rf-traps [34] and atoms in optical lat-
tices [35]. Moreover, it is impractical to adopt here usual
cryogenic techniques, because it would make very difficult
to use the mirror within the interferometer. Nonetheless, it
has been recently theoretically proposed [26], and already
experimentally verified [27], that it is possible to cool an
oscillating mirror of an optical Fabry-Perot cavity using
the radiation pressure. This idea has been proposed as a
new technique to cool room-temperature massive objects,
alternative to standard cryogenics, and in the experiment
of reference [27], the mirror temperature has been low-
ered by a factor 40. Here we show that, in the case of
a mirror with a very high-Q mechanical factor, the same
method could be applied in principle, to cool the harmon-
ically oscillating mirror even to its quantum ground state.
When the mechanical frequency ω is much smaller than
the resonance frequency of the electromagnetic mode in
the cavity ωc, retardation effects, the Doppler frequency
shift and the Casimir effect are negligible and the system
is described by the Hamiltonian

H = ~ωb̂†b̂+ ~ωcâ†â− ~Gâ†â
(
b̂+ b̂†

)
, (D.1)

where â and b̂ are the annihilation operators of the
cavity mode and of the mirror respectively, and G =√
~ω2

c/2mωL2 (L is the length of the Fabry-Perot cav-
ity) [26]. When the cavity mode is externally driven by a
sufficiently intense laser field, the system reaches a quasi-
classical steady state with the cavity mode in a coherent
state |βs〉 (βs � 1) and with a displaced equilibrium posi-
tion for the mirror. The quantum fluctuations around this
steady state are then well-described by a linearized Hamil-
tonian, which, in the interaction picture with respect to
the unperturbed cavity mode Hamiltonian, reads [26]

H = ~ωb̂†b̂− 2~G|βs|Yϕ
(
b̂+ b̂†

)
, (D.2)

where Yϕ = (âeiϕ + â†e−iϕ)/2 is the cavity field mode
quadrature with phase ϕ = arg(βs). This Hamiltonian
shows that the dynamics of a generic field quadrature
Yδ 6= Yϕ is sensitive to the position of the mirror x =√
~/2mω(b̂ + b̂†) and therefore a continuous homodyne

measurement of Yδ provides an effective continuous mon-
itoring of the mirror position. The basic idea of the cool-
ing scheme is to use this continuous position measurement
by applying a feedback loop able to decrease the position
fluctuations. Due to the continuous nature of the measure-
ment and to the effect of the harmonic potential coupling
the mirror position with its momentum, feedback will re-
alize an effective phase-space localisation. With this re-
spect, the scheme is a sort of “continuous version” of the
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Fig. 6. Probability to prepare the harmonic ground state of
the mirror Pg as the stationary state of the feedback process,
versus the mechanical quality factor Q = ω/γ. The curve refers
to an initial temperature T = 300 K, to an homodyne measure-
ment efficiency ηh = 0.99 and to a mirror oscillation frequency
ω = 1 kHz.

stochastic cooling methods employed in particle accelera-
tors and recently studied also for trapped atoms [36,37].
The best way to feed back the homodyne photocurrent is
to use it as a driving term for the momentum [26], and
the easiest way to realize it, is to use just the scheme ex-
perimentally employed in reference [27]. In this case an
effective momentum driving is obtained by using the ra-
diation pressure on the back side of the mirror, exerted
by an external laser whose intensity is modulated by the
derivative of the homodyne photocurrent.

The dynamics of the mirror in the presence of the
continuous homodyne-mediated feedback can be derived,
and, in the limit of negligible feedback delay time, it is
described by a Markovian master equation [26,37]. The
relevant point is that when the mechanical frequency ω is
much larger than the mechanical damping γ and than the
feedback gain g (see [26]), the approach to the stationary
state in the presence of feedback can be described by aver-
aging over the harmonic oscillations which means choosing
the rotating frame at frequency ω. In this rotating frame,
the mirror master equation of reference [26] reduces to

ρ̇ =
(γ + g)

2
(N + 1)

(
2b̂ρb̂† − b̂†b̂ρ− ρb̂†b̂

)
+

(γ + g)
2

N
(

2b̂†ρb̂− b̂b̂†ρ− ρb̂b̂†
)
, (D.3)

where

N =
1

γ + g

[
γ

exp {~ω/kT} − 1
+

4G2|βs|2
γb

+
g2γb

64ηhG2|βs|2
− g

2

]
(γb is the cavity decay rate and ηh is the efficiency of
the homodyne measurement). This expression for N cor-
responds to that of reference [26] except that we have con-
sidered the optimal case when the measured field quadra-
ture is the one orthogonal to Yϕ (φ = −π/2 in [26]) and
we have used the exact expression of the mean thermal
vibrational number instead of the high-temperature limit
kT/~ω − 1/2.

The stationary state of the master equation (D.3) is
just a thermal state with effective mean vibrational num-
ber N . The interesting point is that, if the oscillating mir-
ror has a very good mechanical quality factor Q = ω/γ,

the feedback gain g can be chosen so that the mean vibra-
tional number N can become arbitrarily close to zero, that
is, the motional ground state can be prepared with a prob-
ability close to one. This fact is illustrated by Figure 6,
where the ground state probability Pg = (1 + N)−1 is
plotted versus the mechanical quality factor Q. The curve
refers to a homodyne-mediated feedback loop with effi-
ciency ηh = 0.99 and optimal gain g ' 20 Hz, which is
applied to a mirror initially at room temperature. Unfor-
tunately, one has an acceptable preparation of the ground
state of the mirror only for extremely large values of Q
(Pg ' 0.95 for Q = 1013). However the curve of Figure 6
does not change appreciably for mirror frequencies in the
range 1 kHz ≤ ω ≤ 100 MHz, and this is interesting,
because it implies the possibility to perform the exper-
iment with a high-Q mirror composed of 1012 particles,
which is a feasible nanofabrication project [30]. In fact,
as we have seen above, one has to consider a Lamb-Dicke
parameter η ' 1 in order not to have a signal suppres-
sion. Using X-ray photons, and assuming a mirror oscil-
lation frequency ω = 1 kHz, this implies a mirror mass
m ' 10−15 kg, i.e. a 1012 particles mirror.

The above feedback scheme could be implemented just
using the same experimental scheme of reference [27],
based on an optical Fabry-Perot cavity, which for exam-
ple can be collinear with the interferometer. In this case
one needs a mirror foil with a good reflectivity for op-
tical wavelengths; the other “fixed” mirror of the cavity
needs to have a good reflectivity at optical wavelengths
too, while it has to be essentially transparent in the X-ray
region, so that it does not affect the interferometric detec-
tion of the decoherence-induced symmetry breaking. Al-
ternatively, one may use a non-collinear cavity (two addi-
tional mirrors instead of one), or preferably, simply make
use of interferometer itself to be part of the feedback sys-
tem before it is part of the measurement. Indeed, it is
designed to detect minute mirror changes in order to be
sensitive to the hypothesized localizations.

Finally, it is important to note another feature of the
high-Q mirror. The heating time starting from the ground
state is essentially given by theat = ~ω/γkT = ~Q/kT ;
using the required value Q = 1013, one has theat ' 30 s,
which means that with a high-Q mechanical mirror, heat-
ing does not represent an experimental problem.
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